

Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

Roberto Garcia/TD64 Lisa Griffin /TD64 Robert Williams/TD64 Space Transportation Directorate

Presented at:
MSFC Falls Fluids Workshop
November 19, 2002

Overview

- · Introduction
 - Fluid Mechanics at MSFC
- Relevant Fluid Dynamics Activities at MSFC
 - Turbomachinery
 - Nozzles
 - Combustion devices
 - Systems
 - MDA
- Related Topics
 - Hardware investments
 - Process improvements
 - Concluding Remarks

CFD on Space Transportation Systems Technology

Introduction

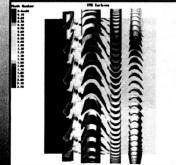
- High-fidelity fluids design & analysis expertise at MSFC focused in the space transportation directorate
 - CFD (TD64), induced environments (TD63), cold flow testing (TD62, TD63, TD74), and functional design (TD61)
- Fluid dynamics expertise a core competency at MSFC
- Support focused in two broad areas
 - Space Shuttle propulsion
 - Next Generation Launch Technologies
 - · Space launch initiative (2nd generation RLV)
 - · Advanced Space Transportation Program (3rd generation RLV)

Introduction: Role of Fluid Mechanics Expertise

- Fluid mechanics applications at MSFC focused on improving the safety, reliability, & cost of space transportation systems
- We define geometry, quantify environments, and predict performance
 - Incident investigation support (analysis and test)
 - Environments and performance definition (analysis and test)
 - Develop advanced hardware concepts and designs (analysis and test)
- · We support the programs in meeting their goals
 - Assist the programs in being "smart buyers"
 - Provide innovative technical solutions
- We work with external partners who possess key capabilities
 - Other NASA centers, other government agencies, industry, academia

Introduction: CFD Goals

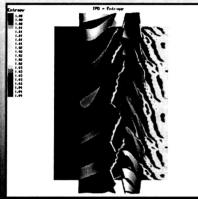
- Provide personnel with the tools to succeed
 - Maintain and enhance civil service personnel capabilities
 - Provide challenging work, hands-on experience, training
 - Continuously improve analysis techniques, computing resources, and test facilities
- Acquire/develop capability to perform broad, CFD-based parametric design concept studies
 - Spend more time engineering, less time "CFDing"
 - More efficient use of available computing resources
 - Requires automation in all phases: grid generation, flow solver, post-processing
- · Expand range of CFD applicability
 - Improved models, combustion, transient processes, relative motion, cavitation, multi-component
 - Greater efficiency and robustness in flow solvers

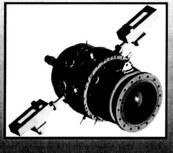


Turbomachinery Activities

- · Turbomachinery Dynamic Environments and Performance
 - High power density of rocket engine turbomachinery requires high-fidelity definition of the flow induced environments
 - Supported in TD64 w/ CORSAIR and w/ test definition & support
- Turbopump optimization task
 - 2 stage supersonic turbine, instrumented rotor
 - Tool improvements, design process improvements, rig design, manufacture, and testing

Optimized supersonic turbine

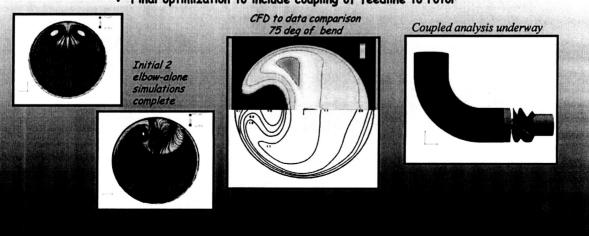

Turbomachinery Activities


SLI Turbine Airflow test rig:

- Subsonic, high flow turbine
- Design, analysis, manufacture, testing
- Instrumented rotor for code validation
- Turbine test rig in manufacture

CFD analysis of tester predicts similar flow patterns as for engine conditions

Test rig mechanical design complete

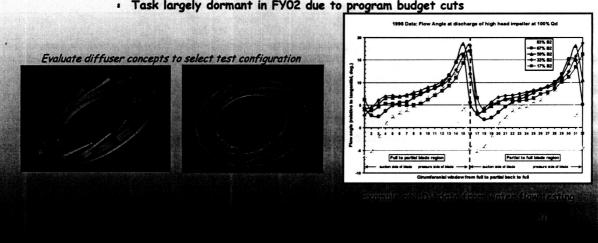


Turbomachinery Activities

- Conducting CFD code validation to support pump-feedline design
 - Manifolds/feedlines interaction w/ rotor is an important effect
 - Have benchmarked Corsair and Chem for pipe flows
 - Applying validated code towards optimization of feedline for candidate configuration
 - · Initial optimization w/ feedline alone
 - · Final optimization to include coupling of feedline to rotor

Turbomachinery Activities

- Space Shuttle LPOT nozzle cracking
 - First application of Corsair to "incompressible" flow field prediction
- Shuttle feedline flow liner cracks investigation support
 - Predicting large p' at flow liner due to back flow from inducer
 - Circumstantial evidence supports predictions



Turbomachinery Activities

Deep Throttle Turbopump task

- Cooperative effort between Ames/MSFC/Rkdn
 - · Generate CFD validation data set for pumps
 - · Apply validated CFD code to develop deep throttling pump design concepts
 - · INS3D from Ames applied to SOA designs
 - · Assess code, improve designs
- Task back within project guidelines for FY03
 - . Task largely dormant in FYO2 due to program budget cuts

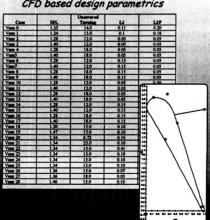
Turbomachinery Activities

- Concepts NREC Inducer design Phase 2 SBIR
 - Develop engineering design tools for cavitating inducers
 - Verify through new inducer designs
- CRAFTech Cavitation Analysis Capability Development Phase 2 SBIR
 - Extend current model to cryogenic propellants
 - Add time accurate capability in cavitation model
- Developing Phantom to better support unsteady turbomachinery analysis
 - Uses much of Corsair infrastructure
 - New formulation will support real fluids model
 - · Improved efficiency for solving pump problems
 - · 2-phase flows, non ideal fluids, etc.

CRAFTech cavitation

Inducer from Concepts NREC SBIR

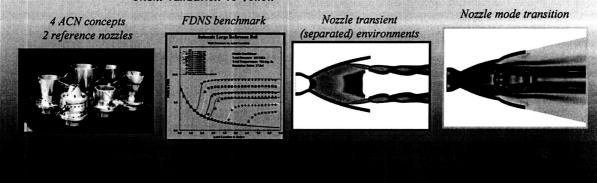
Turbomachinery Activities



- Supported Cobra Turbine designs
 - PW/AJ joint venture staged combustion LOX-H2 engine
 - Performed CFD of main turbines in various environments full 360-degree analysis
 - Supported design of low pressure turbomachinery
 - Airflow test rigs designed

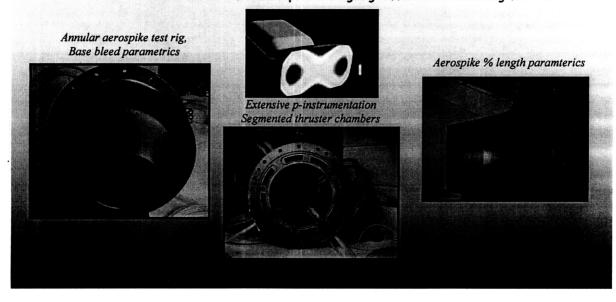
ATD High Pressure Turbines under Cobra Conditions

CFD based design parametrics


nulus calculations Include GAMMA

Nozzle Activities

- · Technology need
 - Nozzles are a key component in setting the engines performance, thrust to weight, and operational life limitations
 - Application of CFD tools to advanced nozzle designs immature
- Recent/Ongoing activities
 - Have completed initial interaction with European community via NATO RTO Working Group #10
 - Testing of Aerojet designed altitude compensating nozzles complete
 - · Full-flowing and separated CFD code validation data sets
 - · FDNS comparisons look very good, but painful to obtain
 - · Chem validation to follow



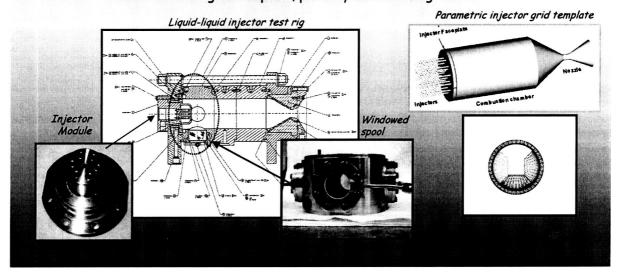
Nozzle Activities

- Recent/Ongoing activities (continued)
 - Tested dual-throat linear aerospike (Rkdn design concept)
 - · Highly instrumented
 - Setting up to test annular aerospike
 - · Validation data for aerospike undergoing differential throttling for TVC

Combustion Devices

- · Technology need
 - Contemporary rocket engine combustion devices similar to 1960s-1970s designs
 - Longer life (robust), higher T/W designs required
 - · Experimental demonstration of design robustness/life is cost prohibitive
 - Application of CFD in design of combustion devices hampered by real limitations
 - : Inadequate accuracy (lack of physical modeling)
 - · Inadequate turn-around time
 - Inadequate validation and verification where required physics are included in the CFD tools
 - Current focus at MSFC is in rocket chamber combustion
 - · High pressure, all-speed, reacting flows
 - Presentations Wednesday morning
 - Combustion devices technology roadmap meeting and discussion
 Thursday morning

Combustion Devices



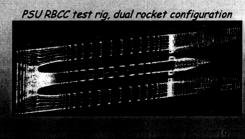
- Focus of groups combustion devices activities is the staged combustion injector technology (SCIT) task
 - Task objective is to develop, validate, and verify a CFD based injector design process
 - Develop 1D injector design/engineering tool
 - Develop optimization tools to allow efficient use of large number of CFD solutions
 - Develop required CFD capabilities for supporting large design parametrics
 - · Robustness, physical models, turnaround time
 - Generate validation data sets
 - · Verify by testing injector designed using new process
 - · Gas-gas, liquid-gas, liquid-liquid
 - · H2-02, HC-02
 - Large task with ambitious goals, progress hampered by:
 - · Changes in external priorities, direction
 - Greater than anticipated difficulty in achieving required robust (fireand-forget) capability in FDNS for injector analysis
 - Difficulty in genting data suitable for code validation

- SCIT task (continued)
 - Have performed several gas-gas injectors design parametric studies
 - : Each on the order of 50 designs
 - Have tested initial gas-gas elements at PSU (code validation)
 - Liquid-liquid injector test rig in manufacturing
 - Multi-element grid template, porosity models being tested

Combustion Devices: Injectors and Chambers

- Several key areas are likely to get increased attention
 - Hydrocarbon analysis capability improvement (turn-around time)
 - · Enhancement to testing at SSC of RS-84 hardware
 - · Test data for code validation
 - · Assessment of advanced concepts
 - Transient modeling capability
 - · Many combustion devices related failures occur during engine transients
 - · CFD turnaround time, sub-critical combustion, lack of validation data
 - Combustion Stability
 - The elephant in the room that everyone tries to avoid/pretend it's not there
 - · Potential focused NGLT area of focus
 - · AFRL potential new initiative

Engine Systems

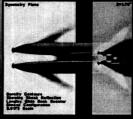

Technology need

- T/W of rocket engines sensitive to design of engine manifolds/ducts
- Many design shortcomings traceable to interaction between components and engine "plumbing"
- Combined cycle concepts required integrated design/analysis approach

· Recent/Ongoing activities

- Internal assessment of LOCI/Chem from MSU
 - · Unstructured, density based code
 - · LOCI architecture designed for MDA
 - · Under NASA sponsorship for RBCC flow path application
- Has been applied to engine powerhead problem
- Will be used to model RBCC flow path

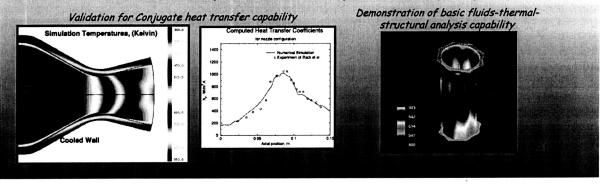
Propulsion-Vehicle System Integration


Technology need

- SOA vehicle concepts require a high level of propulsion-to-airframe integration
 - · Air-breathers (RBCC or TBCC), parallel-burn multi-stages

Recent/Ongoing Activities

- Developing stage separation database and tools
 - · Use generic but relevant vehicle configuration to develop test database
 - · Test effort at MSFC, CFD (w/Overflow) at JSC have been great success
- Further activities under SLI waiting program assessment relative to vehicle development
 - · CART3D (Ames) possible efficient way to support concept development
 - Chem w/automated grid templates being developed in U.F. URETI


Vehiclepropulsion integration ov/Chem

MDA Development

- · Technology need
 - Many space transportation system propulsion system failures are multidisciplinary in nature
 - · Thermally induced, fluid-structure interaction, etc.
 - · Many are also related to transient or time varying, 3D events
- Recent/Ongoing activities
 - LOCI framework being developed to support 3D, time accurate, MDA analysis capability
 - Initial demonstrations of fluid-thermal-structural modeling capability demonstrated
 - · Under URETI plan to continue development of this capability

CFD Process Improvements

- Tendency towards greater CFD based design parametrics
- Enabled by access to traditional and non-traditional "super-computers"
 - Access to NASA-Ames SGI based compute clusters
 - 512 and 1024 processor SGI high-end computers
 - Two local PC-based clusters
 - Local SGI O-2000 systems
 - SGI O-2000 desktop workstations

Computers	processors	processorspeed	ram
Nexus	16	250 MHz, R10k	12 GB
Korben	8	300 MHz, R12k	8 GB
Neo	16	500 MHz, R14k	16 GB
Hydra	40	600 Mhz - 933 Mhz PIII	10 GB
Chimaera	200	1500 MHz, Athlon MP	100 GB
Tyrell	32	250 MHz, R10k	32 GB
Desktops	2	400 MHz, R12k	.5 - 2 GB

CFD Process Improvements

- Tendency towards greater CFD based design parametrics
- · Enabled by labor-reducing utilities
 - Improved process efficiency
 - Automatic or near automatic grid generation system
 - "fire-and-forget" flow solver capability
 - · Time-stepping, grid adaptation/refinement, multi-gridding, etc
- Dedicated personnel for internal process improvement
 - Create or improved labor reducing utilities for CFD process
 - Develop visualization technology for pre- and post-processing
 - Created automated test suite for software upgrades testing
 - · Testing/validation key to robustness, improvements, reliability
 - · Must be made affordable
- Continuous process

Concluding Remarks

- TD64 focused on supporting the space transportation programs
 - Engaged in the Next Generation Launch Technologies program, SSME program, IR&D
- Design and analysis tools being applied and/or under development in the major hardware areas
 - Turbines, pumps, combustion devices, engine systems, propulsion-to-airframe integration
 - MDA capabilities under development
- Increasing the design process efficiency and fidelity is paramount
 - Attempting to address key shortcomings in CFD process
- Code validation, robustness, reliability key to meeting CFD's promise